Compound Semiconductor: June 2021

Compound Semiconductor: June 2021

Easing the chip-to-chip communication bottleneck by leveraging microLED display technology

High-speed optical emitters derived from GaN-based microLED displays can move data at much higher density and lower power than copper, bringing optical connections to the centimetre scale

BY BARDIA PEZESHKI, ROB KALMAN, ALEX TSELIKOV AND CAMERON DANESH FROM AVICENA

MOST OF THE ENERGY consumed in computing systems is not in the computation, but in moving data, and the longer the distance, the greater the challenge in terms of energy and density. At longer length scales, fibre optic links have replaced copper, but at short distances the significant amount of energy required to convert data back and forth between photons and electrons makes optical interfaces prohibitive.

Although it may raise a few eyebrows, at these shorter length scales, optimized optical emitters derived from GaN microLEDs could be a promising candidate for optical communications by leveraging their success in the display industry. Such a move could transform the $400 billion computer hardware industry and enable entirely new architectures for parallel computing, machine learning, and processors.

Read more