Posts

Avicena logo

Press Release

Avicena unveils LightBundleTM, a chip interconnect technology with dramatically lower power consumption and higher bandwidth density

Highly parallel optical links with power efficiency of 0.1pJ/bit, bandwidth density of 10Tbps/mm2 and reach of up to 10m promise to smash current interconnect bottlenecks in distributed compute systems

Avicena logo

MOUNTAIN VIEW, CA — June 8, 2021 —

Avicena Inc., a privately held company in Mountain View, CA, today unveils LightBundleTM, a highly parallel optical interconnect technology targeting up to 10 meters reach for chip-to-chip interconnects in distributed computing, processor-to-memory disaggregation, and other advanced computing applications. LightBundleTM is based on arrays of novel GaN high-speed micro-emitters, leveraging the microLED display manufacturing ecosystem, and is fully compatible with high performance silicon ICs.

Interconnects are becoming the key bottleneck in compute and network systems. Highly variable workloads are driving the evolution of densely interconnected, heterogeneous, software-defined clusters of CPUs, Graphical Processing Units (GPUs), Data Processing Units (DPUs) and shared memory blocks. Exploding Artificial Intelligence (AI) and Machine Learning (ML) workloads are exemplary of emerging applications driving an accelerating need for interconnects with extremely high density, low power consumption and low latency.

We have developed very high-performance optical transmitters based on emitter technology from the display industry. These innovative devices would have been impractical just a few years ago. Our optimized devices and materials support 10Gbps links per lane over -40°C to +150°C temperature with excellent reliability. — Bardia Pezeshki, Founder & C.E.O.

Read more

Compound Semiconductor: June 2021

Compound Semiconductor: June 2021

Easing the chip-to-chip communication bottleneck by leveraging microLED display technology

High-speed optical emitters derived from GaN-based microLED displays can move data at much higher density and lower power than copper, bringing optical connections to the centimetre scale

BY BARDIA PEZESHKI, ROB KALMAN, ALEX TSELIKOV AND CAMERON DANESH FROM AVICENA

MOST OF THE ENERGY consumed in computing systems is not in the computation, but in moving data, and the longer the distance, the greater the challenge in terms of energy and density. At longer length scales, fibre optic links have replaced copper, but at short distances the significant amount of energy required to convert data back and forth between photons and electrons makes optical interfaces prohibitive.

Although it may raise a few eyebrows, at these shorter length scales, optimized optical emitters derived from GaN microLEDs could be a promising candidate for optical communications by leveraging their success in the display industry. Such a move could transform the $400 billion computer hardware industry and enable entirely new architectures for parallel computing, machine learning, and processors.

Read more